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12.) Space charge 
 
Concerning beam transport we did not include the forces between the charged particles due to 
electromagnetic interaction. For high beam currents the space charge of the beam will be significant 
and space charge forces cannot be neglected any longer. The space charge forces lead to a beam 
defocusing in particular for ion beams in the Low Energy Beam Transport (LEBT) section. 
 
The space charge effects are called collective effects. In addition, the electromagnetic interaction of 
the charged beam particles with the beam pipes and vacuum chambers has to be taken into account 
(mirror charges and currents). 
 
Collective effects can be divided into two distinct groups according to the physics involved. The 
compression of a large number of charged particles into a small volume increases the probability for 
collisions of particles within the same beam. Because particles perform oscillations in the beam 
transport, statistical collisions occur in longitudinal, as well as transverse phase space often causing a 
mixing of phase space coordinates.  
The other group of collective effects includes effects which are associated with electromagnetic fields 
generated by the collection of all particles in a beam. 
 

ß small     space charge forces dominate 
 
ß ~ 1      particle wall interaction dominates  wake fields 

 
If wake fields are amplified via imperfections  collective instabilities 
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12.1. Space charge effects – non relativistic 

 
We consider two particles with identic charge q. 
The repelling force is defined by the Coulomb-force. 
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Now we consider a test particle in a cylinder symmetric beam 
with the charge qi. 
 
The Coulomb force pushes the test particle outwards. The force 
is zero on axis and is increasing towards the beam edge. This radial 
force leads to a beam defocusing. The space charge field can be 
derived by: 
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We assume cylinder symmetry and no variation 
in s-direction. In case of a homogeneous space 
charge distribution within the 

beam we have 0)(  r  and we get 
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So we can derive the potential: 
 

0

0

)()( UdrrErU

r

   

 

A: r < R    0

0

2

0

4
)( U

r
rU 







 

 

r rW R 

U0 

UW 

U(R) 

U 

Uw 



SS2015    12.4 

B: r > R     0
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We get U0 = U(r=0). U0 we can calculate by using the known wall potential UW = U(rW): 
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Thus we derive for the potential depression between wall and beam axis 
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and between beam edge and beam axis        
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If the velocity modulation of the beam particles by the space charge potential is small, the space 
charge density stays homogeneous 
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Uacc = Acceleration voltage for the beam particles.  
 
Finally we get: 
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For a more realistic investigation the Poisson equation in cylindrical coordinates has to be solved. 
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In case the space charge is very high, beam particles can be reflected. This effect is called virtual 
cathode limit. This is dominant for low beam energies. Therefore a maximum current for each 
acceleration voltage can be transported. For r=R we get 
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10.2. Space charge effects – relativistic 
 
For relativistic ion beams: 
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The self-magnetic field results from   jBrot


0     or     dFjrdB 0

2

0




  

 

2

02 rjrB       
rcrjrB  




22
)( 000

 

 
The space charge forces depend on the velocity of the particles. Aside the electric field the beam 
creates an azimuthal magnetic field. These fields create a radial component of the Lorentz force: 
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The space charge defocusing is a non-relativistic effect. The self-magnetic field compensates for 
relativistic energies the repulsive electric forces of the space charge. In case of space charge 
compensation (f < 1 – degree of compensation) 
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Thus the result can be a net focusing of the beam (relativistic self-focusing) due to the space charge 
compensation: 
 
In case of a drift the equation of motion is: 
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   , a = beam radius 

 
We now introduce the characteristic current (Alfvén current) 
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For electrons we get I0 = 17045 A, for ions we get I0 = 3*10

7
*A/q  A. 
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The characteristic current is used when the space charge density  is replaced by the beam current. 
(Alfvén, H., Phys. Rev. 55 (1939) 425) 
This current is a quasi-scaling of the space charge potential, hence Lawson introduced the generalized 
perveance in 1958: 
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  (J. D. Lawson, J. Electron Control, 5 (1958) 146) 
 

Therefore in a drift we have                              
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The space charge acts like a continuously defocusing lens, if the beam is not partially compensated 
with –K/a

2
. With a quadrupole lens we get the following Hill DGL: 
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We have now the equation of motion for a single particle in case the phase spaces are not coupled 
(which is not the case for space charge forces). We now evaluate a distribution of particles in a beam.  
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We now investigate the motion of the second moments (RMS-values) of the particle distribution: 
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By introducing the RMS-beam size 
2xa   we get 
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This is the RMS-envelope equation. The term 3a

x
is the emittance term. The emittance term is 

negative as it represents the divergence of the particle. The focusing term kx*a must be positive.  

The last term a

xFsc

 is repulsive, as it represents the space charge action. The equation of motion of 

the particle distribution (**) is quite similar to the equation of motion of a single particle (*). The 
difference is the emittance. 
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The space charge forces are non-linear and couple the degrees of freedom (transverse and 
longitudinal). The space charge forces lead to RMS-emittance growth, because the transverse 
oscillations of the beam particles depend on the amplitudes (non-linear forces) and on the coordinates 
of the other directions (coupling). 
 


