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Transformation of phase space in a circular accelerator  

In a circular accelerator the coefficients k(s) of Hill’s equation must be periodic: 

)()(0)( skCskrskr =+=⋅+′′  

C is the circumference of the accelerator. A solution of this equation is derived by the Floquet-

theorem with  

)()()( seCssr
i ϕϕϕ ψ∆=+⇒=  

∆ψ is the phase advance after one period. One solution was derived: 
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and for the transformation matrix 
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Due to the periodicity for the Twiss parameter we get )()( sCs ββ =+ and )()( sCs αα =+ . 

For the eigen-solution of the transfer matrix of a circular accelerator we get: 
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This matrix does the transformation of x and x’ for one revolution in the ring. 
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Twiss matrix: MMMM 
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For n revolutions:  JIJIM NN
NN
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The beam matrix 



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
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αβ
εS is transformed via M to 

T
MSMS ⋅⋅= as required by the 

periodicity. 

 

 

Dispersion  

As the magnetic forces of the magnets in an accelerator depend on the momentum of the 

particle, the bending and focusing of the charged particles depends on the particle momentum. 
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Particles entering with a different energy (i.e. different Bρ) are bend with a different radius. 

Therefore a bending magnet does translate a momentum or energy difference to the perfect 

particle into a spacial offset of the particle after the bend. This couples the longitudinal with the 

transverse phase space. Therefore we extend the matrix formalism to 6 dimensions: 
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It is usually convenient to look at the matrix using 2x2 block matrices 
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Example: The drift in the 6-dimensional transfer matrix 
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 x = offset in x-direction [m] 

 x’ = slope in x-direction [rad] 

 y = offset in y-direction [m] 

 y’ = slope in y-direction [rad] 

 λ =  longitudinal offset from synchronous 

          particle [m] 

 δ = ∆p/p0 = relative momentum difference 
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More general for a bending magnet for instance: 
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The dispersion D(s) couples the momentum delta to a transverse offset: 0)( δ⋅= sDx xD  

In case of a bending magnet we talk about dispersion, in case of a magnetic lens about chromatic chromatic chromatic chromatic 

aberrationaberrationaberrationaberration. We get the according expressions for the dispersion by the equation of motion.  

The equation of motion that describes the dispersive case (transverse beam dynamics 

reminder): 
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Both equations can be transformed in Hill‘s-equations: 
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Now we take the momentum spread into account: 
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In order to solve the equation, one needs to find the modified orbit δ⋅= )()( sDsxD caused by 

the momentum difference. This is a periodic function and is called dispersion. The solution is 

)()()( sxsxsx D +=δ .where x(s) is the betatron oscillation and the solution of the homogenous 

Hill’s equation. 

)()()()( shsDsksD x =+′′  

For the dispersion function we have D(s) = D(s+C) and D’(s) = D’(s+C). Boundary conditions 

are s0=0, D(s0)=D0 and D’(s0)=D’0.  
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With the cosine and sine like functions C(s) and S(s). As a solution for D(s) we get (see 

Hinterberger) 
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Here ∆Ψ is the phase advance dependent on s and µ the phase advance per revolution period. 

D(s) is increasing with 0
2

sin →
µ

. In case of    N⋅=⇒= πµ
µ

20
2

sin diverges.  

 

Now µ determines the number of betatron oscillations 

per revolution period 

π
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=Q   which is the so called “betatron tune”“betatron tune”“betatron tune”“betatron tune”. 

Now we remember that 

∫=Ψ
)(

)(
s

ds
s

β
 ⇨ ∫==

C

s

ds
Q

0
)(2

1

2 βππ

µ
 

Qx, and Qy are the QQQQ----values or values or values or values or working pointsworking pointsworking pointsworking points of the circular accelerator. 
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Momentum compaction and Resonances  

In a circular accelerator we have ω = ω(p), da  = 2π*v/C. Damit erhält man 
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αp is called the Momentum Compaction Factor. This parameter is the connection between the 

relative difference of the orbit length per revolution and the relative momentum difference of a 

particle. 
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As a good approximation δ⋅= )()( sDsxD  does only contribute in the bending magnets to 

∆C/C0. Therefore the length difference of different orbits is (with dα=ds/ρ0=h(s)ds) 
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We can vary D(s) via the ion optics and therewith ∆p as well. αp determines the dispersion in 

the area of the bending magnets. The smaller D(s) the closer the orbits for a given Δp/p0 and the 

smaller is αp.  
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0>⇔< ηγγ tr   , 

0=⇔= ηγγ tr   

0<⇔> ηγγ tr  

At   0
0

=
∆

⇔=
ω

ω
γγ tr  the particles orbit isochronous in the ring, independent on the 

momentum (and energy).  This transition is special for heavy ion synchrotrons and storage 

rings. For a strong focusing synchrotron we get  
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An error of the dipole field δB at s= s0, which act over a very short length of Δs establishes a kick 

of the beam (change in the angle) Δx’. The „closed orbit“, which is the orbit of the perfect beam 

particle, is distorted � ”closed orbit distortion“. 

 

Such an distortion causes betatron oscillations. 
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Amplitude:    π

β

Q
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a
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)( 0
′∆⋅

= . The amplitude is proportional to the kick strength, to the 

betatron function to 1/ sin(Qπ). The amplitude diverges with Q=N and the particles get lost. 

� stop band 

 

The particles pass the error region 

with the same phase and errors add 

to increasing amplitudes. 

Closed orbit distortions are compensated 

with steerer magnets. 

 

 

 

 

 

In a tune-diagram, the resonances of different orders are sketched: 
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