Dispersion and resonances

Transformation of phase space in a circular accelerator

In a circular accelerator the coefficients k(s) of Hill's equation must be periodic:
" +k(s) - r=0  k(s+C)=k(s)

C is the circumference of the accelerator. A solution of this equation is derived by the Floquet-
theorem with

r=¢(s) = @s+C)=e""g(s)

Av is the phase advance after one period. One solution was derived:

x(s) = +/€B(s) - cos(¥(s) + ¥,)

and for the transformation matrix

/%( cosAY + ¢, sin AW) \/,Bf B, sin AY
a—a AY - (1+a,a,)sin AY :
(¢, f)COS ( i f)sm B, (cosAY — asin AWY)

\/le :Bz ﬁf

>
Il

Due to the periodicity for the Twiss parameter we get S(s+C) = f(s)and (s +C) =a(s).

For the eigen-solution of the transfer matrix of a circular accelerator we get:

cosAY + a(s)sin AYW B(s)sin AV
_ _ 2 :
Rovie=M= (@ (NsmAY o os)sin AP)
B(s)
_[cosAY + a(s)sin A¥ B(s)sin A¥
| —#s)sinA¥ cosAY — o(s)sin AP)

This matrix does the transformation of x and x’ for one revolution in the ring.

[x(s+C)j_(c(S,s+C) S(S,S+C)j(x(s)

) =l ) ) )=E(s,s+C)5é
x(s+C) c(s,s+C) s(s,s+C)N\x(s)
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Dispersion and resonances

cos A + a(s)sin AW B(s)sin AY
M(s)=| (1+a’(s))sinAY
B(s)

[cos 1+ a(s)sin i B(s)sin i J (1 o] . [ a(s)  B(s) ]
= . : =cosu + sy
—y(s)sin cos i —o(s)sin i —-y(s) —a(s)

=cos,u£+sin,ul

cosAY — a(s)sin AW

Twiss matrix: M

det(a ’sz—a2+,3-7:1 ,i-l:(_l OJ:—I CJ =

For n revolutions: MN =(cosp L +sinu J)¥ =cosNu [ +sinNu J

B

i 44
o y ]is transformed via M to S =M -S-M"as required by the

The beam matrix O = 5{

periodicity.

Dispersion

As the magnetic forces of the magnets in an accelerator depend on the momentum of the
particle, the bending and focusing of the charged particles depends on the particle momentum.

A4

______________

Dispersion |

Bp<Bp.; Ref.Bp "Bp>Bp,.s
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Dispersion and resonances

Particles entering with a different energy (i.e. different Bp) are bend with a different radius.
Therefore a bending magnet does translate a momentum or energy difference to the perfect
particle into a spacial offset of the particle after the bend. This couples the longitudinal with the
transverse phase space. Therefore we extend the matrix formalism to 6 dimensions:

X X, x = offset in x-direction [m]
x' R11 R12 R16 x'o X’ = slope in x-direction [rad]
| R21 R22 . R26 Y y = offset in y-direction [m]
y' - L y,o i’ = slope in y-direction [rad]
= longitudinal offset from synchronous
Al \R, R, ... R, A pajide ] y
o S,

d = Ap/po = relative momentum difference

[t is usually convenient to look at the matrix using 2x2 block matrices

Rxx ny RXZ Rxx O O
R=|R_ R R _

w > . and in the absence of coupling R=0 yy 0

R, R, R, 0 0 R

Example: The drift in the 6-dimensional transfer matrix

%:%%:%50 . ﬂ(s)—zO=Li—:=%50 :s,z(s)=ﬂo+%50
" xX=x,+Lx,
x'=x,
y=Yy+Ly,
[ - g Y=Y
/1:10""(['/72)50
5=0,
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Dispersion and resonances

S O O O = I~

1
0
0
prift =1
0
0

X (v S (5 0 0

X' € ] 5 (3]

i 0 0

yl | o0 0 0 0o |y,
A (Alxy) (A1X') (A1 A) (A1oy) || 4
o 0 0 0 0 0 1 0,

The dispersion D(s) couples the momentum delta to a transverse offset: X, = D, (s)- 50

In case of a bending magnet we talk about dispersion, in case of a magnetic lens about chromatic
aberration. We get the according expressions for the dispersion by the equation of motion.

The equation of motion that describes the dispersive case (transverse beam dynamics
reminder):

L &
p(s) p,

x”(S)+( 21 +k(S)JX(S)=
P (s)

S
Y'(s)=k(s) y(s)=0

Both equations can be transformed in Hill's-equations:

k.(s)=k(s)+ ;o ky(8)=—k(s)

2

Now we take the momentum spread into account:
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Dispersion and resonances

X +k(s)-x=h(s)-0 with h(s) = . o=
Po(s) Po

In order to solve the equation, one needs to find the modified orbit x,(s)=D(s)-0 caused by

the momentum difference. This is a periodic function and is called dispersion. The solution is
x5(s) =x,(s)+ x(s) .where x(s) is the betatron oscillation and the solution of the homogenous

Hill’s equation.
D’(s)+k_(s)D(s) = h(s)
For the dispersion function we have D(s) = D(s+C) and D’(s) = D’(s+C). Boundary conditions
are so=0, D(so)=Do and D’(so)=D’0.
C(sy)=1 ; S(s,)=0

D($)=DCO+DSS) Vo . gsy=1

With the cosine and sine like functions C(s) and S(s). As a solution for D(s) we get (see
Hinterberger)

p(sy=Y7 (‘2 j W) BG) cos(A‘I‘—%)dE

2sin— s
Here AY is the phase advance dependent on s and p the phase advance per revolution period.

D(s) is increasing with Sing — 0.1n case of Sinz =0 = u=27-N giverges.

Now p determines the number of betatron oscillations /-"/ ﬁ""'-\\
per revolution period /7~ Particle ™
7 Trajectory 5\
)7 / \
Q =—— which is the so called “betatron tune”. | ™\ Reference \
27 t Orbit \
1
Now we remember that \ ’I'
‘\\ Bending Magnet  /
w(s) J- ds = 0 u 15 ds N, With Field Error ./
S)= = = I . ’,/
B(s) 2 27w B(s) R

Qx, and Qy are the Q-values or working points of the circular accelerator.
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Dispersion and resonances

Momentum compaction and Resonances

In a circular accelerator we have ® = ®(p), da = 2rw*v/C. Damit erhalt man

Aw _Av  AC Av 1 Ap AC Ap

— with T 2 -

@ v, G Vo 72 Po G, "p 0

op is called the Momentum Compaction Factor. This parameter is the connection between the
relative difference of the orbit length per revolution and the relative momentum difference of a
particle.

Aw 1 A A
_:(__%J_P:,]_P

@, 72 Po Po

As a good approximation X, (S) =D(s)-0 does only contribute in the bending magnets to
AC/Co. Therefore the length difference of different orbits is (with doo=ds/po=h(s)ds)

s+C, s+C, s+C, s+C
AC= [(p,+xp)da— [pda= Jh-deE:A—p [ DEh()ds
s s s p() s
1 s+C,
5 @, =— [DE)h(s)ds
c, °

We can vary D(s) via the ion optics and therewith Ap as well. a, determines the dispersion in
the area of the bending magnets. The smaller D(s) the closer the orbits for a given Ap/po and the
smaller is a.

1 1 1
’7=£—2—“sz0 > E, =y,mc" > 77=?—7

tr
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Dispersion and resonances

y<v, © n>0,

=7, © n=0
y>7, © 1<0

Aw

At V=Y, & P =0 the particles orbit isochronous in the ring, independent on the
0

momentum (and energy). This transition is special for heavy ion synchrotrons and storage
rings. For a strong focusing synchrotron we get

1
aPzQ_g’ %erx

An error of the dipole field B at s= so, which act over a very short length of As establishes a kick

of the beam (change in the angle) Ax’. The ,closed orbit“, which is the orbit of the perfect beam
particle, is distorted = "closed orbit distortion®.

Such an distortion causes betatron oscillations.

’ _éB ”
A =——As=F(s))As 5 x"+k_ (s)x=F(s)

Bp
x(s) = V ﬂ ( j FE) B(5) cos(AY — Q1) ds

solution:

) _ x(s) _ A/B(sy) -AY ~
= o AX [ B(s,) cosS(AW — Q1) = 5 2engn cos(A¥ — Q)
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Dispersion and resonances

i /B(So) : Ax,
Amplitude: 4= 2sin Q7 The amplitude is proportional to the kick strength, to the
betatron function to 1/ sin(Qmx). The amplitude diverges with Q=N and the particles get lost.
=>» stop band
The particles pass the error region P T
with the same phase and errors add Orbit I,_{’*;i <
to increasing amplitudes. ,’; '

Dipolmagnet

Closed orbit distortions are compensated :
mit Feldfehler

with steerer magnets.

L]

Feldfehler optische Resonanz \\_ _ Teilchenbahn ,/
Dipolfehler O=n \"'-.,ﬁ - ‘f_,__f_f- “
Quadrupolfehler O=n+1/2 NSy
Sextupolfehler O=n+1/3 o
Oktupolfehler O=n+1/4

Ina '_E?}vl__-_o_ — ---__-___--_L}?\f_'__-_ - ders are sketched:

Measurements

RN

42 43 44 45
Quo

G. Franchetti et al., GSI-Acc-Note-2005-02-001

I mO. . +nQ,=p (m,n, p = ganze Zahlen) ‘
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